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This case study showcases the development of a binary logistic model to predict
the probability of survival in the loss of Titanic. I demonstrate the overall modeling
process, including preprocessing, exploratory analysis, model fitting, adjustment, boot-
strap internal validation and interpretation as well as other relevant techniques such
as redundancy analysis and multiple imputation for missing data. The motivation and
justification behind critical statistical decisions are explained, touching on key issues
such as the choice of a statistical model or a machine learning model, using bootstrap
to reduce selection bias, disadvantages of the holdout sample approach in validation,
and more. The study finds that

• Females and kids are more likely to survive on average. But the women and children
first policy was severly undermined in the first and third class.

• Crew members have the second highest survival probability, only smaller than first
class passengers.

• Passengers who travelled with parents survive better, while other family relation-
ship (sibling, children, spouse, etc.) is of lesser help.

• Nationality does not have a significant effect on survival.
• Passengers came aboard at Cherbourg have significantly higher survival likelihood

than passengers boarded at other embarkation ports.

Introduction

The sinking of RMS Titanic has brought to numerous machine learning competitions a quintessen-
tial dataset. The unsinkable British passenger liner struck an iceberg on 15 April 1912 in her maiden
voyage, and was eventually wrecked. More than 1500 people perished in the great loss. Decades of
effort has been devoted to the study the tragic accident, in which one major interest for statistical
inquiries is to model and predict the probability of survival given personal characteristics.

In recent years the web has witnessed the birth of numerous variants of Titanic data, with one
primary source being Encyclopedia Titanica (1999), a site started in 1996 as an attempt to tell the
story of every person that traveled the Titanic as a passenger or crew member. This case study
grows from the most up-to-date version of the site’s data as of October 2020, with the following
columns available (Table 1). Source data and steps of data cleaning are elaborated in the data
section in the appendix.

∗This case study has been greatly inspired by Dr. Frank Harrell’s similar example in his Regression Modeling
Strategies (2015, chap. 12) book.
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Table 1: Cleaned data with 2208 rows and 11 columns

Variable Definition Note
survived survival Status 0 = Lost, 1 = Saved
age age In years, some infants had fractional values
gender gender
class cabin class 1st, 2nd, 3rd or crew
joined port of embarkation Belfast, Cherbourg, Queenstown, Southampton
nationality motherland from wiki passenger list
title title Extracted from name
spouse # of spouse on board
sibling # of siblings on board
parent # of parents on board
children # of children on board

The data underlying the whole analysis recorded the survival status 2208 Titanic travelers alongside
his/her gender, age, companions on board, title, nationality, etc. There were 1496 victims and 712
survivors in total.

We’ll start by presenting some core analytical questions. Building on many outstanding works of
study (2004; 2009; 2018), we establish the following research questions.

Question 1: To which degree is the women and children first policy respected? The obvious
fact is that significantly higher proportion of females (73.4%) and children (57.3%) were rescued
than males (20.5%) and adults (42.5%). The key question lies in identifying possible factors that
might intervene this process. For example, a first class adult male may possess the socio-economic
advantage or financial means to get lifeboat access unfairly from the deck crew. The policy can
be disrupted in other ways: some Titanic subjects could behave more in line with the selfish
homo oeconomicus, then people (especially male) in their prime with physical superiority would see
higher probability of survival. We are interested to know how gender, age and class were interwoven
together to form the resulting Titanic survival pattern.

Question 2: Did crew members fulfill their responsibilities? On the one hand, the 908 crew of men
and women are expected to be more experienced, skilled and better informed about the location
of the lifeboats and the incoming danger. On the other hand, their obligations were to care for the
safety of passengers first, and only abandon the ship after the task has been fulfilled. We want to
know whether self interest dominates in the life-and-death situation and crew tended to look out
for themselves, or they have faithfully adhered to their responsibilities.

Question 3: For those who traveled alone with no companion (spouse, sibling, parent, children) on
the vessel, is their survival probability greater or less? Those who are unaccompanied could reach a
life-saving decision faster without transaction cost and negotiation, yet at the cost of a shortage of
psychological and physical support. Specifically, the effect of having a parent or a child on the ship
has been widely studied. The theory of parental investment suggests that women on average invest
more in caring for their offspring than males. In times of a disaster, higher opportunity cost will
alert females with offspring more than others, and make them seek more aggressively for changes
to secure the children as well as themselves. In statistical terms, gender-children interaction may
exist.
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Question 4: Did English passengers receive any special care or given priority to board lifeboats?
After all, Titanic was operated by British crew, and managed by British captain, masters and
officers that might give preference to compatriots.

To ensure reproducibility, all the analysis is done in R (R Core Team 2020) with code and text
made public in this repo. A brief summary of each section is listed below

• Exploration. We examine data distribution characteristics, data missing patterns and relative
effects leveraging descriptive statistics, followed by redundancy analysis to study dependencies
among predictors. Finish with nonparametric loess regression exploring nonlinear trends.

• Model development. The key section in specifying, developing, validating and describing a
binary logistic model, split into

– Specification We fit a saturated model with each predictor allowed maximum complexity
and nonlinear interactions. This is used to guide development of the final model, based
on hypothesis testing and predictor importance ranking with bootstrap.

– Multiple imputation: We use predictive mean matching to impute subject’s age, resulting
in 30 complete dataset.

– Model fitting and validation. We fit the final pooled model. Bootstrap internal validation
(the “.632” method) is used to study optimism-corrected index measuring discrimination
and calibration.

• Interpratation and discussion. We describe the model with both graphical methods such as
partial effect plots and statistical testing. This provides model-based explanation to address
former research problems.

• Conclusion. Conclusion and further study.

Exploration

Descriptive statistics and data processing

A graphical summary of is given by the Hmisc::describle() function. For numerical variables, a
inline histogram is produced alongside summary measures such as the number of missing values
and the mean. For discrete variables, we focus on the number of categories and their relative
frequency.

t
11 Variables 2208 Observations

survived
n missing distinct Info Sum Mean Gmd

2208 0 2 0.655 712 0.3225 0.4372
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age
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

1497 711 71 0.999 30.18 14.31 8 17 22 29 38 47 54

lowest : 0.8 1.0 2.0 3.0 4.0, highest: 67.0 69.0 70.0 71.0 74.0

gender
n missing distinct

2208 0 2

Value Female Male
Frequency 489 1719
Proportion 0.221 0.779

joined
n missing distinct

2208 0 4

Value Belfast Cherbourg Queenstown Southampton
Frequency 200 271 123 1614
Proportion 0.091 0.123 0.056 0.731

nationality
n missing distinct

2208 0 7

lowest : American English Finnish Irish Other , highest: Finnish Irish Other Swedish Syrian

Value American English Finnish Irish Other Swedish Syrian
Frequency 246 1002 58 168 549 99 86
Proportion 0.111 0.454 0.026 0.076 0.249 0.045 0.039

class
n missing distinct

2208 0 4

Value 1st 2nd 3rd crew
Frequency 321 270 709 908
Proportion 0.145 0.122 0.321 0.411

title
n missing distinct

2208 0 4

Value Miss Mr Mrs other
Frequency 267 1590 212 139
Proportion 0.121 0.720 0.096 0.063

spouse
n missing distinct Info Sum Mean Gmd

2208 0 2 0.087 66 0.02989 0.05802

sibling
n missing distinct Info Mean Gmd

2208 0 4 0.138 0.05752 0.1103

Value 0 1 2 3
Frequency 2101 91 12 4
Proportion 0.952 0.041 0.005 0.002
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parent
n missing distinct Info Mean Gmd

2208 0 3 0.079 0.03804 0.07441

Value 0 1 2
Frequency 2148 36 24
Proportion 0.973 0.016 0.011

children
n missing distinct Info Mean Gmd

2208 0 5 0.077 0.03895 0.07636

lowest : 0 1 2 3 4, highest: 0 1 2 3 4

Value 0 1 2 3 4
Frequency 2150 37 16 3 2
Proportion 0.974 0.017 0.007 0.001 0.001

There are several noteworthy patterns.

Of special importance is the age variable, in which nearly 30% are missing. On the other hand, it
has a approximately symmetric distribution with 80% of the known observations falling between
14 and 50. For further examination of patterns of missing data, we fit a tree model, explaining
when age is missing.

na_tree <- rpart(
factor(is.na(age)) ~ .,
data = t |> mutate(survived = as.factor(survived)),
minbucket = 50

)
# figure 1
rpart.plot::rpart.plot(na_tree, type = 3, cex = 0.6)
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survived = 1

nationality = American,Finnish,Irish,Swedish

nationality = English,Other

class = 1st,2nd

title = Miss,Mrs,other

class = crew

nationality = Other
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Figure 1: The decision tree for predicting is.na(age), which finds strong patterns of missing related
to class/department and gender (the Syrian node has very limited samples). Each node
shows (top to bottom) if age is predicted to be missing, the predicted probability of
missing, the proportion of observations in the node.

We see in Figure 1 that survival status, gender and class are essential in determining age missingness.
Generally, for some third class male passenger or crew, age is most likely to be missing. For a 3rd
class male passenger who did not survive, age is missing with a probability of 60%. Interestingly,
English male crew members are much more likely to have missing age than subjects of other
nationalities.

Back to other variables in descriptive statistics. There were nearly twice as many males passengers
as females. It is an surprising discovery to me that it wasn’t until the late 19th century that the
idea of women traveling alone gained ground. The distribution of the number of companions one
has on the Titanic tend to be very narrow and concentrated at 0, as illustrated in Figure 2. Such
variables do not have sufficient variation to be modeled continuously. Dichotomization into “zero
or more” is then motivated since the analyst will not lose too much information.

For each predictor, Figure 3 displays the survival percentage in the observations for different cate-
gories (or cutpoints). This is a univariate graph with no control over confounding variables, though
it may still assist us in determining how to spend degrees of freedom. If a predictor’s effect on the
response is strong, it’s more likely that we need to spend more parameters on it. However, if a
variable’s effect appears to be weak, it could either due to a truly flat relationship, or to a nonlinear
effect.

The plot reveals appreciably strong effects of gender and cabin class on survival status. Age effects
seem trivial except for the subjects with missing entry, but again, the downside of the univariate
graph of this sort is that it forces the audience to think linearly, and only after categorization. By
the same token effects of other variables cannot be determined.
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Figure 2: Few subjects have more than one companion in any of the 4 relations.

We finish with a redundancy analysis to study if data reduction of removing unnecessary predictors
is possible. The checking algorithm expands continuous predictors into cubic splines and categorical
predictors into dummy variables, it then uses OLS to predict each predictor with all remaining
predictors. A predictor is deemed “redundant” if it can be predicted with an 𝑅2 greater than
0.9.

Redundancy Analysis

redun(formula = ~age + gender + class + nationality + title +
spouse + sibling + parent + children, data = t)

n: 1497 p: 9 nk: 3

Number of NAs: 711
Frequencies of Missing Values Due to Each Variable

age gender class nationality title spouse
711 0 0 0 0 0

sibling parent children
0 0 0

Transformation of target variables forced to be linear

R-squared cutoff: 0.9 Type: ordinary

R^2 with which each variable can be predicted from all other variables:

age gender class nationality title spouse
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Figure 3: Univariate summary of relationship between survival and each predictor
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0.340 0.977 0.551 0.492 0.977 0.341
sibling parent children
0.167 0.289 0.339

Rendundant variables:

title

Predicted from variables:

age gender class nationality spouse sibling parent children

Variable Deleted R^2 R^2 after later deletions
1 title 0.977

The redundancy analysis has reported title as redundant, with more than 97% of its variation
explained by the rest of the predictors. It is not surprising that knowing a person’ age could
almost determine his/her title in the four categories. This means including title contains nearly
no predictive value and could be readily deleted.

t$title <- NULL

Loess regression for nonlinear pattern

The loess method is a common nonparametric regression model to study nonlinear relationship. In
the case of binary response, the fitted value at 𝑥 = 𝑥0 is the weighted proportion of positive cases
near the neighborhood of 𝑥0. If a loess curve exhibits a reasonable degree of nonmonotonicity, it
will often pay to not assume linearity, e.g., modeling the predictor with polynomial transformation
or with splines. For this reason, we can model age against survival status with loess regression to
avoid linear assumption.

It was also widely studied that gender interacted directly with age, in other words, age effects
for men and women are most likely to be nonparallel in the logit scale. Another prominent joint
effect, according to many follow up studies, happened between age and cabin class. Figure 4 draws
loess estimates of survival probability given age under certain stratification. Not only in a powerful
nonlinear fashion does age affect survival status (top left panel), we also observe it interact with
other two factors in a nonlinear way. Despite that the loess estimation here would by no means
serve as a strict inference-oriented model, and we only include 3 factors at this point, it inspires a
treatment of these effects that is more cautious and thorough. We shall assume complexities such
as non-linearity and interaction, rather than a linear main effects model.

Model development

A typical modeling workflow begins with an choice of a statistical model or a machine learning
model. A statistical model often stems from a hypothesized probabilistic data generating mecha-
nism y, whereas machine learning models are algorithmatic in nature, optimized with parameter
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(c) survival pattern of subjects from different cabin class condition on sex.

Figure 4: Loess estimates of 𝑃(survived), with tick marks representing frequency counts within
equal-width bins.
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tuning. We choose to develop a statistical model, a “simple” binary logistic regression, for the
following reasons.

We prefer probabilistic predictions to classification with output label 0 and 1, for the emphasis
placed upon the tendency of survival. The value of modeling consists not in a dichotomous clas-
sification, but in what characteristics would increase or decrease the probability of survival. This
notion has ruled out most of the machine learning models for classification, say, random forest,
support vector machines and neural network, which are not intrinsically probability oriented. Such
classifiers can often only yield a forced choice.

Interpretability and inference matters. Many top data science competitions have reported moder-
ately high signal to noise ratio (e.g., 90% prediction accuracy) that might tip the balance towards
machine learning models, yet interpretability is harmed. Specifically, statistical models favors ad-
ditivity and explicit specification. It follows that there are natural distinctions between main effects
and interactions, linearity and nonlinearity. And the inference procedure is well defined provided
that the model is correctly specified. While in a multi-layer neural network, everything can interact
with one another and it could be daunting to isolate effects and conduct inference.

Machine learning models are data hungry and sometimes create the need for big data (Ploeg, Austin,
and Steyerberg 2014). To guard against overfitting, the analyst has to have a sample size that is
10 times larger at least if he chooses a tree model instead of regression. While this case study uses
a Titanic dataset that is about 1/3 larger than those only concerned with passengers, it is far less
sufficient for a typical data-hungry machine learning model to validate well. The rationale is that
a statistical model is a safer approach that can do without big data, as Dr. Harrell commented

If n is too small to do something simple, it is too small to do something complex.

Specification

We start by fitting a relatively large model, to decide how model complexity should be properly
represented. This includes deciding the number of knots for continuous predictors and the number of
categories of categorical predictors, could we remove some term, where should we place interaction,
etc. This strategy as a starting point is also called prespecification of predictor complexity. It
avoids creating phantom degrees of freedom when one has subjective judgment according to scatter
diagrams or descriptive statistics on how to represent variables in a model. Commonly done, for
example, is excluding a quadratic term simply because it is “non-significant”, with p-value on
the edge of 0.05. This approach is known to distort coefficient estimates, confidence intervals, p-
value and calibration (too optimistic) of the final model, because it fails to accounts for sampling
variability and suffers selection bias.(Grambsch and O’Brien 1991)1 Therefore, we add an additional
layer of model simplificiation via resampling.

Pre-specification of predictor complexity is done first by developing a saturated logistic model and
then making necessary adjustments and improvements. In this model, we grant age the maximnum
flexibility represented as natural splines with 5 knots, with all categorical predictors retaining their
original un-pooled categories. Two way interactions are specified between age and gender, age and

1confidence interval too narrow, p-value and standard errors too small and calibration too optimistic
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class, age and parent, and gender and children. Since this is an initial model, observations with
missing age are not used. The model equation is 2

survived ~ (rcs(age, 5) + gender + class)^2 + (rcs(age, 5) * parent) +
gender * children + joined + spouse + sibling + nationality

Table 2: Hypothesis testing for the saturated model

𝜒2 d.f. 𝑃
age (Factor+Higher Order Factors) 59.76 24 <0.0001

All Interactions 34.91 20 0.0206
Nonlinear (Factor+Higher Order Factors) 45.20 18 0.0004

gender (Factor+Higher Order Factors) 183.28 9 <0.0001
All Interactions 50.76 8 <0.0001

class (Factor+Higher Order Factors) 72.11 18 <0.0001
All Interactions 54.92 15 <0.0001

parent (Factor+Higher Order Factors) 16.43 5 0.0057
All Interactions 8.23 4 0.0835

children (Factor+Higher Order Factors) 1.79 2 0.4080
All Interactions 0.76 1 0.3820

spouse 0.68 1 0.4099
sibling 0.41 1 0.5217
joined 5.60 3 0.1330
nationality 32.33 6 <0.0001
age × gender (Factor+Higher Order Factors) 8.58 4 0.0724

Nonlinear 8.28 3 0.0405
Nonlinear Interaction : f(A,B) vs. AB 8.28 3 0.0405

age × class (Factor+Higher Order Factors) 18.82 12 0.0929
Nonlinear 17.67 9 0.0392
Nonlinear Interaction : f(A,B) vs. AB 17.67 9 0.0392

gender × class (Factor+Higher Order Factors) 31.69 3 <0.0001
age × parent (Factor+Higher Order Factors) 8.23 4 0.0835

Nonlinear 1.47 3 0.6882
Nonlinear Interaction : f(A,B) vs. AB 1.47 3 0.6882

gender × children (Factor+Higher Order Factors) 0.76 1 0.3820
TOTAL NONLINEAR 45.20 18 0.0004
TOTAL INTERACTION 75.20 24 <0.0001
TOTAL NONLINEAR + INTERACTION 93.90 27 <0.0001
TOTAL 263.75 45 <0.0001

Table 2 selects specific hypothesis to test for general power, linearity and additivity assumptions
of individual predictors, as well as their “chunky” version of global effects. We see dominant main
effects of gender, age and cabin class, be it linear or nonlinear (𝑝 < 0.0001). Equally notable are the
strong nonlinear interaction terms between the three variables. Of all four companion variables only
parent manifests clear predictive ability. The impact of embarkation point is somewhat ambiguous
(𝑝 = 0.14). As a graphical illustration, Figure 5 plots “adjusted” partial 𝜒2 statistic of each
predictor in the saturated model, with correction for degrees of freedom allocated to them.3 This

2rcs(x, n) means “represent predictor x using natural splines with n knots”. Knots are placed on evenly space
percentiles by default.

3The correction is done by subtracting the d.f. from the partial 𝜒2 statistic, its expected value under the null
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adjustment levels the playing field for comparison of predictive ability. The larger the adjusted 𝜒2,
the more likely a variable would have a non-flat impact on survival status.

sibling

spouse

gender * children

children

joined

age * parent

age * gender

age * class

parent

nationality

gender * class

age

class

gender

χ2  P
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Figure 5: Ranking of predictive power in the saturated model based on adjusted 𝜒2

As mentioned before, the goal of the saturated model is to guide the arrangement model complexity.
More specifically, should we allocate more degrees of freedom to a certain term because some
complex effects has been underrepresented? Or is there a term that is highly irrelevant thus could
be deleted? The polynomial transformation on age and the resulting nonlinear interaction carry
substantial statistical power, while further increasing knots or creating high-order interactions
causes numerical problems. Therefore, it is positive advantage to us to keep them as is. There are
also not sufficient reasons to collapse levels for nationality and port. Binary variables such as spouse
and sibling have extremely large p-values (𝑝 > 0.5), indicating relatively small predictive power.
Still, great care should be taken when one attempts to conduct aggressive model simplification based
on hypothesis testing and p-values. A reliable way is using bootstrap resampling. Figure 6 studies
the importance of all terms including main effects and interaction over 400 bootstrap resamples.
In each resample, we fit the saturated model, rank all 13 terms by the adjusted statistic 𝜒2 − d.f.
in ascending order so that 13 is most important and 1 is least important. The height of a bar
indicates the number of times a term is ranked at that position.

The importance ranking echoes previous findings that gender, age and classes are predominant
factors. It also reveals great variability in terms of assessing predictive power. For example, we are

hypothesis.

13



54
249

87

40087
305

49 90 141 64

81 69 65 78 57

72 82 56 73 46

95 100 86 59 42

58 73 74 61

45 144 149

62 93 73 48

79 174 61

159 158
50 41 98 93 63

51 87 123 76

age

gender

class

parent

children

spouse

sibling

joined

nationality

age * gender

age * class

gender * class

age * parent

gender * children

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 6: Distribution of importance ranking over r nrow(ranks[!is.na(ranks[, 1]), ]) boot-
strap resamples. Text annotation indicates the number of times a term has a specific
ranking, when the term ranked more than 40 times at that position. For example, gender
ranks 13 (the most important) in all resamples.

only confident that joined is not one of the 5 most influential predictors. Nonetheless, rankings
of the aforementioned “weak” variables, sibling and spouse, are highly concentrated at 1 to 3. In
fact, if we perform backward selection in nearly 400 bootstrap resamples with AIC as stopping rule,
none of the 2 binary variables entered the selected model more than 20 times. These corroborating
evidence, combined with p-values, lead to the final decision of removing them in the final model.

t$sibling <- NULL
t$spouse <- NULL

Multiple imputation

# multiple imputation with predictive mean matching to generate 30 complete dataset
imp <- mice(t, method = "pmm", m = 30, printFlag = FALSE)

The last step before fitting the final model is imputing missing values for age. The goal of multiple
imputation, in contrast to simple alternatives such as filling in conditional mean, is to provide an
accurate estimate of the variance-covariance matrix that not only accounts for sampling variability,
but also for the extra variance caused by missing values and finite number of imputations (Van
Buuren 2018). Thus tests on individual parameters gain power and bias are reduced. The general
idea is to generate multiple complete dataset, fit the model in parallel, and then obtain a pooled
final estimate by averaging over all fitted models.
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Figure 7: Density plot of observed and imputed data. In general, the imputed dataset mimic the
age distribution seen in the observed data.

We use predictive mean matching with 𝑚 = 30, since approximately 30% of age is missing. The
nonparametric method selects a group of Titanic subjects from all complete cases that have pre-
dicted values closest to the predicted value for the subject with missing age. 4 One donor is
randomly drawn from the candidates, and the observed age of the donor is taken to replace the
missing value. We use the default “type 1 matching” and 5 donors (Van Buuren (2018), Section
3.4.2). Advantages of predictive mean matching in the Titanic age setting are manifold. Since
imputations are based on values observed elsewhere, they are realistic (e.g., no negative age). For
another, it is compatible with non-normaility which allows us to have fewer assumptions.

Model fitting, validation and calibration

We now fit the final logistic model across 30 complete dataset. Pooled estimates are obtained by
averaging over all pieces. We also get an imputation-corrected variance–covariance matrix based
on within– and between–imputation variances. The long table of Individual estimates are in the
appendix.

The model exhibits moderate discrimination power, e.g. the ability to separate perished and sur-
vived subjects (concordance probability = area under the ROC curve ≈ 0.81). Brier score, as a
proper quadratic scoring rule that incorporate both aspects, is a promising 0.144.

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 2208 LR 𝜒2 787.09 𝑅2 0.419 𝐶 0.814
0 1496 d.f. 43 𝑔 1.789 𝐷𝑥𝑦 0.627
1 712 Pr(> 𝜒2) <0.0001 𝑔𝑟 5.993 𝛾 0.629

max | 𝜕 log 𝐿
𝜕𝛽 | 0.02 𝑔𝑝 0.274 𝜏𝑎 0.274

Brier 0.144
4The predicted value is generated by fitting a linear main effect model conditional on all other variables.
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Table 3: Hypothesis testing for the final model

𝜒2 d.f. 𝑃
age (Factor+Higher Order Factors) 34.77 24 0.0718

All Interactions 25.72 20 0.1754
Nonlinear (Factor+Higher Order Factors) 21.59 18 0.2507

gender (Factor+Higher Order Factors) 238.52 9 <0.0001
All Interactions 50.95 8 <0.0001

class (Factor+Higher Order Factors) 77.97 18 <0.0001
All Interactions 43.53 15 0.0001

parent (Factor+Higher Order Factors) 11.13 5 0.0488
All Interactions 6.56 4 0.1612

children (Factor+Higher Order Factors) 4.84 2 0.0891
All Interactions 1.57 1 0.2100

nationality 4.85 6 0.5631
joined 8.37 3 0.0389
age × gender (Factor+Higher Order Factors) 7.50 4 0.1118

Nonlinear 6.24 3 0.1005
Nonlinear Interaction : f(A,B) vs. AB 6.24 3 0.1005

age × class (Factor+Higher Order Factors) 9.86 12 0.6278
Nonlinear 9.35 9 0.4058
Nonlinear Interaction : f(A,B) vs. AB 9.35 9 0.4058

gender × class (Factor+Higher Order Factors) 30.58 3 <0.0001
age × parent (Factor+Higher Order Factors) 6.56 4 0.1612

Nonlinear 0.93 3 0.8177
Nonlinear Interaction : f(A,B) vs. AB 0.93 3 0.8177

gender × children (Factor+Higher Order Factors) 1.57 1 0.2100
TOTAL NONLINEAR 21.59 18 0.2507
TOTAL INTERACTION 66.14 24 <0.0001
TOTAL NONLINEAR + INTERACTION 69.99 27 <0.0001
TOTAL 319.68 43 <0.0001

Table 3 again constructs meaningful hypothesis testing for the final model. The 𝜒2 statistic of age
decreases by a minor amount, resulting from using patterns of association with survival status to
impute missing age. Remaining predictors generally have larger 𝜒2 statistic and smaller p-value
compared to the saturated model in Table 2, due to larger sample size in model development.

Although there will not be a second Titanic, making prediction a lesser problem, validation can
still be used for good purposes. It quantifies the degree of overfitting by presenting unbiased,
optimism-corrected metrics. More accurately, we will be using bootstrap internal validation to
study the “future” performance of the model. In an award-winning solution to this legendary
dataset submitted by IBM Watson, a holdout test set was used to validate their model. The data-
splitting approach is known to require a significantly larger sample size (> 20000) than resampling
methods on average to work acceptably well (Harrell, Jr. 2020). Moreover, when the model
developed on training sample is validated, the researcher would recombine training and testing set
to fit a full model. This model, however, is never validated.

As an improved alternative, we choose Efron’s 0.632 method for bootstrap internal validation. In
each of the 494 bootstrap resamples, a logistic model is developed and evaluated on observations
omitted from bootstrap samples. Per-bootstrap optimism is then the apparent index of accuracy
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Figure 8: Bias-corrected calibration curve from internal bootstrap validation. Predictions output
by the final model are plotted against estimated actual probabilities with loess. Bars on
the top indicates number of observations in the same prediction bin. The bias corrected
line is close to the ideal 45 degree line
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Table 4: Optimism-corrected metrics

Index Original Training Test Optimism Corrected 𝑛
Sample Sample Sample Index

𝐷𝑥𝑦 0.6253 0.6416 0.5599 0.0413 0.5840 489
𝑅2 0.4190 0.4374 0.3077 0.0703 0.3487 489
Intercept 0.0000 0.0000 −0.2598 0.1642 −0.1642 489
Slope 1.0000 1.0000 0.6726 0.2069 0.7931 489
𝐸max 0.0000 0.0000 0.0819 0.0819 0.0819 489
𝐷 0.3560 0.3753 0.2526 0.0653 0.2907 489
𝑈 −0.0009 −0.0009 𝐼𝑛𝑓 −𝐼𝑛𝑓 𝐼𝑛𝑓 489
𝑄 0.3569 0.3762 −𝐼𝑛𝑓 𝐼𝑛𝑓 −𝐼𝑛𝑓 489
𝐵 0.1435 0.1407 0.1496 −0.0039 0.1474 489
𝑔 1.7895 2.0282 1.3646 0.2685 1.5210 489
𝑔𝑝 0.2742 0.2812 0.2164 0.0365 0.2376 489

subtracting that in the test sample formed by omitted observations. An weighted average ̂𝜀0 over
all 494 bootstrap resamples is computed to estimate the true optimism, while the bias-corrected
estimate of predictive accuracy is calculated as 0.632(apparent accuracy − ̂𝜀0). Table 4 displays
the results. It validates two general aspects of model accuracy, discrimination and calibration.
Calibration is the ability to make unbiased estimates of survival status, while discrimination is a
measure in how separated predictions are for survivors and victims.

The output does not deviate much from the apparent index. The validated area under the ROC
curve as well as the concordance probability is now 0.8, and pseudo 𝑅2 0.35. This indicates certain
shortage of discrimination ability in comparison to some published models on the older dataset.
Slope = 0.8 signals small amount of overfitting, with coefficients shrinking by 20% on new data.5.
Brier score is now near 0.15.

Discrimination index are often associated with rank correlations between predictions and response,
thus may not be sensitive enough to evaluate their closeness. Figure 8) aims to gauge the con-
cordance between predicted values and observed data, or in other words, calibration. The actual
probability is estimated with loess regression, and the bias correction is computed in a similar way
as in Table 4. The 45 degree line indicates the ideal scenario in which prediction perfectly matches
observation. The model is well-calibrated by and large, with slight departure from the straight line
in central region where there were few observations. The mean squared error is 0.00018, and the
0.9 quantile of absolute error is 0.023. Similarly, the unreliability index 𝐸𝑚𝑎𝑥 = 0.07 measures
maximum error in predicted probabilities. All these metrics reflect strong calibration.

To sum up, the model presents reasonable discrimination power and satisfactory quality of fitting.
Excellent performance in calibration lifts overall metrics such as Brier score.

Interpretation and discussion

With non-monotonic relations and interactions involved, interpretations built upon parameter es-
timates or interquartile-range odds ratios are rarely informative. In this case, the model can be

5𝐷𝑥𝑦 = 2(concordance proabability - 0.5)
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effectively described by partial effects plots, where we plot each characteristics against ̂𝑃 (survived)
while holding other predictors constant at mean or median for continuous variables and mode for
categorical variables. When interactions are involved, the survival probability are estimated sepa-
rately for various levels of the interacting factors. For categorical predictors, level-specific effects
are computed comparing to a reference category.

Figure 9 is an example partial effect plot for age under stratification of sex and cabin class.

1st 2nd 3rd

0 20 40 60 0 20 40 60 0 20 40 60

0%

25%

50%

75%

100%

Figure 9: Age effects on survival status for female and male, stratified by cabin class. The default
control setting is parent = 0, children = 0, nationality = English, and port = Southamp-
ton. Shaded region are 95% confidence interval.

We now address research questions invited in Introduction.

Question 1: Study the effects of the women and children first policy, with focus on gender, age and
classes.

Women and children are evacuated first on average, as mentioned before using total proportion.
The model helps us bring into considerations possibly intervening factors that could distort the
established order of lifeboat access. There was recollection that at the beginning of the sinking,
the Second Officer on the Titanic suggested to Captain Smith, “Hadn’t we better get the women
and children into the boats, sir?”, to which the captain responded: “put the women and children
in and lower away”. Fifth Officer Harold Lowe in the American Inquiry as reinforced this policy as
one regardless of classes

It was simply the first women, whether first class, second class, third class, or sixty-
seventh class. It was all the same; women and children were first.

As we shift the emphasis away from total numbers and the average, particularly after taking a closer
look at numbers under stratification, another story presents itself. To begin with, not all classes
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of women and children received the same level of help during the sinking, whether intended or
unintended. We observe that first class passengers have the highest predicted survival possibility in
general, and the third class being the lowest. The chasm between classes is most manifest in adult
women. A 30-year-old first class women is likely to survive with a likelihood between 83.7% and
98.9%), and had she been in the third class, 26.4% and 79.2%. For children, knowing a 12-year-old
comes from the first class increases the upper bound of predicted survival probability by nearly
30%. The most decisive explanation is that first-class passengers had better access to information
about the imminent danger and were aware that the lifeboats were located close to the first class
cabins. Thus, their marginal effort costs to survive were lower. Only 4 first class women did not
survive, and at least two of them stayed on the ship voluntarily. In contrast, most third-class
passengers were located at the quarters down the stern, from which the designer deliberately made
it difficult to reach the upper decks.

While the first class is used to exemplify the uneven treatments of different classes, the policy was
severely undermined within the third class after removing class effects. But let us first take the
second class as a reference group, where the prediction roughly matches what should happen if
children and women received the asserted assistance on the part of the authorities. The likelihood
of survival for both gender starts approximately at the same level, then the probability for male
plunged as he ages, while female only see a minor decrease after leaving the “girl” range. In the
observations children were saved 100% (24 out of 24) and 88.7% of the women were rescued (94
out of 106).

The third class deviates from the reference group in two aspects. Firstly, people in their prime
have higher predicted survival probability. The survival curve displays an inverted U-shape, where
people aged between 20 and 30 are mostly likely to survive, for both men and women. Secondly,
the estimated gender gap in survival probability narrows drastically for third class. For example,
being an 28-year-old man in the third class increases survival probability by 10% compared to the
second class on average, whereas for a female age-mate the third class makes her 33% more unlikely
to survive. In addition, third class children had a slight 6% advantage in survival rates over adults,
whereas in the other 3 groups, this disparity rose to 56%.

In summary, women and children first was only true on average. It was a not a class-blind effort,
and third class women and children were faced with an extra harsh situation.

Question 2: Are crew members driven more by self interests or by responsibilities during the
sinking?

In age ranges where we have relatively large sample (between 20 and 40), crew members have a
survival pattern very skin to that of the first class passengers (left panel of figure @ref(fig:partial-age-
crew)). Females are predicted to survive with a probability 90.4%. In contrast, the mean survival
probability female between 20 and 40 in first, second and third class passengers are 96.5%, 86.7%,
47.6%. When it comes to males, the relative magnitude is the same. The right panel of Figure 10
confirms that crew members were generally the group with the second largest estimated survival
probability. This was not necessarily caused by negligence, but their advantages in informational
and relational resources is evident.

We cannot form a definitive answer as to whether the majority of the crew had fulfilled their
responsibilities. There were, though, analysis pointing out that the crew failed to direct the some
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three to four hundred third class passengers who were heading toward the stern for safety (Gleicher
and Stevans 2004). There they had a false sense of assurance because water was coming in from
the bow at that time. Various stewards encouraged the group to make their journey to the stern.
This eventually resulted in a cut-off from the rescue effort.
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Figure 10: (a): partial effects of age for crew members (b): comparing the estimated survival
probability of crew members to passengers where 20 ≤ age ≤ 40

Question 3: Did those traveling with at least one companion have a higher survival probability
than those traveling alone?

Subjects having at least one parent with them clearly have better chances in surviving (𝑝 = 0.01),
while effects of having child or children is on the verge of significance 𝑝 = 0.06. Their relative
influence in increasing the mean survival likelihood is analogous, both translating into a estimated
6% rise.

We do not see significant joint effects between age and parent, and gender and children. This means
parents influences survival chance of babies, teenagers and adults alike. And the gender distinction
in caring for the next generation is not manifest on the ship.

The other two types of companions, sibling and spouse, were ruled out from due to their low
explanatory value.

Question 4: Did British passengers gain survival advantage for some reason (e.g., activated national
tie or simply because they could understand the instructions)?

Nationality is highly insignificant in the final model (𝑝 = 0.58). People from different nations have
almost identical survival pattern in the same class (Figure 11). One explanation, according to the
titanica forum, is that the crew’s instructions in English tended to be along the lines of “Wait down
here for further orders”, and a lack of understanding might even help.
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Figure 11: Partial effects of nationality on predicted survival probability

Another explanation why the ability to speak or at least understand English might not be an edge,
is that many immigrants in third class were traveling in family or neighborhood groups which
included at least one English-speaker (often an established immigrant returning to the US from a
visit back home) who could act as their spokesperson.

Our last discovery concerns embarkation point. Passengers came aboard at Cherbourg totaled 271,
and had a surprisingly higher marginal survival rate of over 50%. The predicted survival proba-
bility is about 10% higher at Cherbourg than the average. The other two non-reference locations
(Southampton and Queenstown) did not observe significant difference (𝑝 = 0.9 and 0.75).
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Figure 12: Partial effects of port on predicted survival probability

The peculiar impact of embarkation is confusing. One relevant point is that the Cherbourg list of
passengers vanished long ago, according to a famous Titanic tract Who Sailed on Titanic, by Debbie
Beavis. Getting the number of passengers on that port is difficult, not to mention the exact list of
who went on which ship. Though it is still hard to imagine why Cherbourg could almost shoulder
the entire 𝜒2 statistic for joined, even with the presence of some amount of incorrectness.

Conclusion

When all is said and done we detach ourselves from these fixed questions, and have a quick overall
examination on all factors in Figure 13. We identify gender, class and age as the top 3 most powerful
determinants of survival status. Traveling with a parent and boarding the ship at Cherbourg
(mysteriously) also increases survival probability.

We found that complex class factors exists in the overt preference to rescue women and children
first. First Class women had a significantly greater likelihood of survival than either a woman from
the second or third class. Also, the difference in survival likelihood between male and female were
much reduced in the third class.
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Figure 13: Ranking of predictive power in the final model based on adjusted 𝜒2

This short analysis leaves room for improvement in several ways, not the least of which is model
specification. Flexibility (more knots on age, higher order and more interactions) is sacrificed in
exchange for a workable fit without numerical problems. Valuable information such as fare is left
out, as I have not figured a reasonable way to study its effect with one third of the subjects being
crew members. It may also also be informative to split the crew into groups of different respon-
sibilities, e.g., officers, deck and engine crews, victualing, restaurant staff. These working groups
differ in comparative information advantage and authority, which affects survival rate. Another
crucial yet missing determinant is the location of cabin, which is directly related to lifeboat access.
Regrettably the probe into living details on the Titanic are often qualitative and thus ambiguous.
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Data

A variety of other versions and forms of Titanic data sources have been collected due to public’s
constant interests in the tragedy as well as modern efforts trying to unveil the mystery. A compre-
hensive overview of several data variants is given by Symanzik, Friendly, and Onder (2018). Data
in this case study is accessed on Encyclopedia Titanica, a leading archive on titanic facts. In con-
trast to the the famous titanic dataset (known as titanic3) distributed by kaggle for introductory
level machine learning practices, the case study uses a more up-to-date and complete dataset in
the following ways

• Larger sample size. Our data includes crew and staff members alongside passengers, while
titanic3 only incorporate passenger information. We do not use a separate test set approach
for validation either. As a result, the sample size is about 2.5 times larger.

• More variables. Additional columns such as role on the ship, nationality and occupation are
added. A major difference is made by separating the travel companion data into four distinct
columns: number of parents, children, sibling and spouses that each passenger traveled with.
These were combined into two columns before.

• Improved accuracy. titanic3 was an effort to study Titanic in the 20th century, lastly
updated and improved by Thomas Cason in 1999. During the recent two decades the data
has been constantly revised, many errors corrected, many missing ages filled in, and new
variables created. Now it reflects our our most up-to-date understanding of the event, in the
digital form, as of 21 October 2020.

The data cleaning process involves converting data types, creating new features, adjusting levels
for categorical variable and excluding irrelevant columns. Code can be found at clean.R.

title is extracted through each person’s name with regular expressions and then collapsed into 4
levels.6 This is a predictor that has been widely reported to have good predictive ability in many
submissions. However, as we see in the redundancy analysis at the end of Section @ref(descriptive),
it should not even be accepted in the tentative, saturated model.

Passengers are classified according to their cabin class. Crew includes victualling crew7, engineering
crew, deck crew and officers, substitute crew, guarantee group, restaurant staff and orchestra.

Rare nationality (lower than 50 people) is collapsed.

Age information is presented as non-missing on the surface yet there is an indicator column repre-
senting when a person’s age is only approximate and cannot be fully determined from current facts.
These inaccurate age have been assigned NA. There were also ten subjects whose four companion
variables were all explicitly missing. For simplicity, the mode 0 is filled in. Therefore, the problem
of missing data is reduced to univariate missing of age.

6For example, the title for passenger “Abbing, Mr Anthony” is “Mr”.
7crew in charge of food, housekeeping, laundry, room service, etc.
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Variables we do not utilize in this project includes name, date of birth and death, lifeboat number8,
fare, and cabin number.9

Model formula and paramter estimates

Prob{survived = 1} = 1
1 + exp(−𝑋 ̂𝛽)

, where

𝑋 ̂𝛽 =
0.3614
+0.1614age − 0.0009507(age − 15)3

+ + 0.002925(age − 23)3
+ − 0.004306(age − 31)3

+
+0.00258(age − 36)3

+ − 0.0002482(age − 50)3
+

−1.848[Male]
+5.947[2nd] − 1.499[3rd] − 0.8773[crew]
+3.349[1]
+1.695[1]
+0.1254[English] + 0.1968[Finnish] − 0.01283[Irish] − 0.2162[Other] − 0.2629[Swedish]
+0.03238[Syrian]
+0.7162[Cherbourg] + 0.1631[Queenstown] − 0.06169[Southampton]
+[Male][−0.1273age + 0.0009908(age − 15)3

+ − 0.003183(age − 23)3
+

+0.004549(age − 31)3
+ − 0.002512(age − 36)3

+ + 0.0001549(age − 50)3
+]

+[2nd][−0.3654age + 0.001692(age − 15)3
+ − 0.005028(age − 23)3

+
+0.007161(age − 31)3

+ − 0.004251(age − 36)3
+ + 0.0004263(age − 50)3

+]
+[3rd][−0.09317age + 0.0007164(age − 15)3

+ − 0.003001(age − 23)3
+

+0.006235(age − 31)3
+ − 0.004465(age − 36)3

+ + 0.0005146(age − 50)3
+]

+[crew][−0.01428age + 0.0002554(age − 15)3
+ − 0.001171(age − 23)3

+
+0.002635(age − 31)3

+ − 0.001956(age − 36)3
+ + 0.0002369(age − 50)3

+]
+[Male][−0.4305 [2nd] + 2.165 [3rd] + 0.5062 [crew]]
+[1][−0.127age − 0.0008797(age − 15)3

+ + 0.006767(age − 23)3
+ − 0.02689(age − 31)3

+
+0.02565(age − 36)3

+ − 0.004641(age − 50)3
+]

−1.235 [Male] × [1]

8There were 9 recorded passengers who got on the lifeboat yet died before reaching Carpathia, another RMS which
spearheaded the rescue of Titanic survivors. There were also 13 passengers who survived with no boat information
documented, and this is most likely due to data quality issues after looking up on Encyclopedia Titanica. Even
with these exceptions, whether a passenger got on a lifeboat yields perfect prediction on his/her survival. If one
fits a logistic regression model on survival based on whether boat is missing, the apparent accuracy will be nearly
1. In this sense boat is more the result of survival, rather than a cause.

9Although some study used this attribute to find cabin locations, its large amount of missingness could be a major
source of complexity.
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and ([c]=1) if subject is in group (c), 0 otherwise; ((x)_{+}=x) if (x > 0), 0 otherwise\

Parameter estimates, standard error, Wald statistic and p-value

̂𝛽 S.E. Wald 𝑍 Pr(> |𝑍|)
Intercept 0.0089 2.1148 0.00 0.9966
age 0.2114 0.1251 1.69 0.0910
age’ -1.1426 0.7426 -1.54 0.1239
age” 4.9086 3.5265 1.39 0.1639
age”’ -5.9953 4.7267 -1.27 0.2047
gender=Male -1.9657 1.0625 -1.85 0.0643
class=2nd 4.8018 2.4761 1.94 0.0525
class=3rd -1.2075 1.9539 -0.62 0.5366
class=crew -2.3116 2.9322 -0.79 0.4305
parent=1 3.4820 1.2035 2.89 0.0038
children=1 1.7228 0.8076 2.13 0.0329
nationality=English 0.0864 0.2762 0.31 0.7545
nationality=Finnish 0.2300 0.4309 0.53 0.5934
nationality=Irish 0.0156 0.3898 0.04 0.9681
nationality=Other -0.2309 0.2674 -0.86 0.3877
nationality=Swedish -0.1928 0.3815 -0.51 0.6134
nationality=Syrian -0.0492 0.4463 -0.11 0.9122
joined=Cherbourg 0.6624 0.3345 1.98 0.0477
joined=Queenstown 0.1583 0.4123 0.38 0.7011
joined=Southampton -0.0619 0.1998 -0.31 0.7568
age × gender=Male -0.1408 0.0552 -2.55 0.0108
age’ × gender=Male 0.9315 0.4138 2.25 0.0244
age” × gender=Male -4.1761 2.2651 -1.84 0.0652
age”’ × gender=Male 4.9545 3.3787 1.47 0.1425
age × class=2nd -0.3393 0.1538 -2.21 0.0274
age’ × class=2nd 1.4474 0.9459 1.53 0.1260
age” × class=2nd -6.0284 4.4551 -1.35 0.1760
age”’ × class=2nd 7.3629 5.9182 1.24 0.2135
age × class=3rd -0.1339 0.1158 -1.16 0.2476
age’ × class=3rd 0.8637 0.7003 1.23 0.2174
age” × class=3rd -5.0308 3.3216 -1.51 0.1299
age”’ × class=3rd 7.7406 4.4306 1.75 0.0806
age × class=crew 0.0516 0.1684 0.31 0.7592
age’ × class=crew 0.0239 0.8542 0.03 0.9777
age” × class=crew -0.9718 3.6543 -0.27 0.7903
age”’ × class=crew 2.1431 4.4525 0.48 0.6303
gender=Male × class=2nd -0.4207 0.7009 -0.60 0.5484
gender=Male × class=3rd 2.1774 0.6237 3.49 0.0005
gender=Male × class=crew 0.4894 0.8663 0.56 0.5721
age × parent=1 -0.1193 0.1091 -1.09 0.2742
age’ × parent=1 -0.8660 1.3351 -0.65 0.5166
age” × parent=1 10.3356 10.8394 0.95 0.3403
age”’ × parent=1 -26.2109 29.2993 -0.89 0.3710
gender=Male × children=1 -1.2066 0.9608 -1.26 0.2092
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